
Speeding Up Gradient-Based Algorithms for Sequential
Games∗

(Extended Abstract)
Andrew Gilpin
Hg Analytics, LLC

New York, NY, USA
andrew@hganalytics.com

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

sandholm@cs.cmu.edu

ABSTRACT
First-order (i.e., gradient-based) methods for solving two-person
zero-sum sequential games of imperfect information have recently
become important tools in the construction of game theory-based
agents. The computation time per iteration is typically dominated
by matrix-vector product operations involving the payoff matrix
A. In this paper, we describe two techniques for scaling up this
operation. The first is a randomized sampling technique that ap-
proximates A with a sparser matrix Ã. Then an approximate equi-
librium for the original game is found by finding an approximate
equilibrium of the sampled game. The second technique involves
the development of an algorithm and system for performing the
matrix-vector product on a cache-coherent Non-Uniform Memory
Access (ccNUMA) architecture. The two techniques can be applied
together or separately, and they each lead to an algorithm that sig-
nificantly outperforms the fastest prior gradient-based method.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences—Economics

General Terms
Algorithms, Economics

Keywords
Equilibrium finding, automated abstraction, computational game
theory, sequential games of imperfect information

1. INTRODUCTION
Game theory is increasingly serving as the foundation on which

many successful game-playing agents are based. This is perhaps
most noticeable in the development of agents for Texas Hold’em
poker where virtually all of the best poker-playing programs are
based on game theory [3, 5, 6]. The primary limitation in improv-
ing the performance of the agents is the scalability of equilibrium-
finding algorithms.

∗This material is based upon work supported by the National Sci-
ence Foundation under ITR grants IIS-0427858 and IIS-0905390.

Cite as: Speeding Up Gradient-Based Algorithms for Sequential Games
(Extended Abstract), Andrew Gilpin and Tuomas Sandholm, Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In this paper, we focus on the matrix-vector product operation
that accounts for the majority of computation time in gradient-
based algorithms for solving games. We propose two techniques
for speeding up this operation. The first technique is based on ap-
proximating the payoff matrix of the game via a randomized sam-
pling procedure. The second technique is an algorithm and system
for performing the matrix-vector product on a cache-coherent Non-
Uniform Memory Access (ccNUMA) architecture. Fully taking ad-
vantage of this hardware requires the algorithm designer to take
special care in the design of the algorithm’s memory management.

2. TWO-PERSON ZERO-SUM GAMES
A two-person zero-sum game is specified as a matrix A and strat-

egy sets Q1 and Q2 for players 1 and 2, respectively. If player 1
plays strategy x ∈Q1 and player 2 plays strategy y ∈Q2, the utility
to player 1 is xTAy. (The utility to player 2 is the negative of player
1’s utility.) The equilibrium problem is to find a solution to

max
x∈Q1

min
y∈Q2

xTAy = min
y∈Q2

max
x∈Q1

xTAy. (1)

A solution (x∗,y∗) to the above equation is called a minmax so-
lution. If the solution is within ε of optimal, it is called an ε-
equilibrium.

When Q1 and Q2 have linear descriptions, as is the case for ma-
trix games and sequential imperfect information games, Eq. (1) can
be solved using linear programming. However, standard linear pro-
gramming algorithms exhibit poor performance in practice when
applied to that equation, especially with respect to the amount of
memory required. To address the memory issues, the excessive
gap technique [4] has been adapted for solving sequential games of
imperfect information [1]. That algorithm finds an ε-equilibrium
in O(1/ε) iterations. Another algorithm that was specifically de-
signed for solving games uses a simple iterative smoothing tech-
nique to find an ε-equilibrium in O(log1/ε) iterations [2]. Both
algorithms rely heavily on the matrix-vector product operation for
computing gradients of the objective functions. The techniques we
develop in this paper are applicable to any algorithm that requires
performing a matrix-vector product using the game’s payoff matrix
and a strategy vector. This includes any gradient-based algorithm.

3. SAMPLING
For a given game, let Θ denote the possible sequences of chance

moves. In the sequence form representation of zero-sum games,
each leaf in the game tree corresponds to a non-zero entry in the
payoff matrix A. Each leaf also corresponds to a particular se-
quence of chance moves. Thus, we can partition the non-zero en-

1463

1463-1464

tries of A into a collection of non-overlapping matrices {Aθ}θ∈Θ
and we can calculate the matrix-vector product as a sum of prod-
ucts of these matrices:

Ay = ∑
θ∈Θ

Aθ y.

Instead of evaluating Aθ y for all θ ∈ Θ, we can estimate Ay by
evaluating the products only for a small, randomly-sampled subset
Θ̃⊂Θ:

Ay≈ ∑
θ∈Θ̃

zθ Aθ y.

The zθ in the above equation are normalization constants that de-
pend on the specific sampling performed, and are computed by sim-
ply making sure that the sampled probabilities sum to one.

We developed the following algorithm for performing dynamic
sampling.

Step 1 Initialize p = 0.01 and initialize (x,y) arbitrarily.

Step 2 Randomly generate the sample Θ̃⊂Θ so that |Θ̃|= �p|Θ|�.
Step 3 Run the gradient-based algorithm starting at (x,y) until over-

fitting is detected (if p = 1 then run the gradient-based algo-
rithm indefinitely).

Step 4 Let p←min{2p,1}.
Step 5 Go to Step 2.

In an experiment, we showed that for a large instance of an ab-
straction of Heads-Up Limit Texas Hold’em poker, it took the non-
sampled version of the algorithm 32 hours to reach a gap of 20,
whereas the sampled version only takes 3.7 hours to achieve the
same gap.

4. EXPLOITING CCNUMA
ARCHITECTURE

There is a rapidly accelerating trend in computer architecture to-
wards systems with large numbers of processors and cores. At the
highest end of the computing spectrum, this is illustrated by the
development of the cache-coherent Non-Uniform Memory Access
(ccNUMA) architecture. A NUMA architecture is one in which dif-
ferent processors access different physical memory locations at dif-
ferent speeds. Each processor has fast access to a certain amount of
memory (near it in practice), but if it accesses memory from another
physical location the memory access will be slower. However, all
of the memory is addressable from every processor.

A NUMA architecture is cache-coherent if the hardware makes
sure that writes to memory in a physical location are immediately
visible to all other processors in the system. This greatly simplifies
the complexity of software running on the ccNUMA platform. In
fact, code written using standard parallelization libraries on other
platforms will usually work without modification on a ccNUMA
system. However, to fully take advantage of the performance capa-
bilities of the hardware, our matrix-vector multiplication algorithm
for games needs to be redesigned somewhat. Since the matrix-
vector product accounts for such a significant portion of the time
(this is true even when using sampling as discussed in the previous
section), developing an algorithm that scales well in the number of
available cores could have a significant impact in practice.

Processors in a ccNUMA system have fast access to local mem-
ory, and slower access to memory that is not directly connected.
Thus, it would be ideal for every processor to primarily access data

from its local memory bank. The ccNUMA system maps virtual
memory to physical memory based on which processor first writes
to a particular memory location. Thus, a common technique when
developing software for a ccNUMA platform is to include an ini-
tialization step in which all of the threads are created, and they
allocate their own memory and write initialization values to every
location in their own memory.

We use this approach in our algorithm. Given that we have ac-
cess to N cores, we partition the matrix into N equal-size pieces and
communicate to each thread which segment of the matrix it should
access. Then each thread allocates its own memory and loads the
pertinent information describing it’s submatrix. Thus, each thread
will have the most pertinent data loaded in the physical memory
closest to the core on which it is running.

We developed and tested our algorithm on a ccNUMA machine
with 768 cores and 1.5 TB RAM. (In our experiments we only had
access to 64 cores.) We tested the time needed for computing a
matrix-vector product for an abstracted instance of Texas Hold’em
poker. We compared our algorithm against the standard paralleliza-
tion approach that does not take into account the unique physical
characteristics of the ccNUMA architecture. Our new approach is
always faster, and at 64 cores it is more than twice as fast.

5. CONCLUSIONS
In this paper we introduced two techniques for speeding up any

gradient-based algorithm for solving sequential two-person zero-
sum games of imperfect information. Both of the techniques de-
crease the amount of time spent performing the critical matrix-
vector product operation. We developed techniques based on ran-
domized sampling for quickly estimating a gradient. We also spe-
cialized our software for running on a ccNUMA architecture, which
is becoming ubiquitous in high-performance computing. Experi-
ments showed at least a 2x speed improvement over the standard
parallelization approach for up to 64 cores. The two techniques
that we developed can be used together or separately.

6. REFERENCES
[1] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Gradient-based

algorithms for finding Nash equilibria in extensive form
games. In 3rd International Workshop on Internet and
Network Economics (WINE), San Diego, CA, 2007.

[2] A. Gilpin, J. Peña, and T. Sandholm. First-order algorithm
with O(log(1/ε)) convergence for ε-equilibrium in games. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2008.

[3] A. Gilpin, T. Sandholm, and T. B. Sørensen. Potential-aware
automated abstraction of sequential games, and holistic
equilibrium analysis of Texas Hold’em poker. In Proceedings
of the National Conference on Artificial Intelligence (AAAI),
2007.

[4] Y. Nesterov. Excessive gap technique in nonsmooth convex
minimization. SIAM Journal of Optimization, 16(1):235–249,
2005.

[5] M. Zinkevich, M. Bowling, and N. Burch. A new algorithm
for generating equilibria in massive zero-sum games. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2007.

[6] M. Zinkevich, M. Bowling, M. Johanson, and C. Piccione.
Regret minimization in games with incomplete information.
In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2007.

1464

